Open source R for applying machine learning to RPAS remote sensing images

نویسندگان

  • Marco Piragnolo
  • Andrea Masiero
چکیده

The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted Aircraft System (RPAS), is leading to a growing demand for new image processing and classification tools. This article presents a comparison of the Random Forest (RF) and Support Vector Machine (SVM) machine-learning algorithms for extracting land-use classes in RPAS-derived orthomosaic using open source R packages. The camera used in this work captures the reflectance of the Red, Blue, Green and Near Infrared channels of a target. The full dataset is therefore a 4-channel raster image. The classification performance of the two methods is tested at varying sizes of training sets. The SVM and RF are evaluated using Kappa index, classification accuracy and classification error as accuracy metrics. The training sets are randomly obtained as subset of 2 to 20% of the total number of raster cells, with stratified sampling according to the land-use classes. Ten runs are done for each training set to calculate the variance in results. The control dataset consists of an independent classification obtained by photointerpretation. The validation is carried out(i) using the K-Fold cross validation, (ii) using the pixels from the validation test set, and (iii) using the pixels from the full test set. Validation with K-fold and with the validation dataset show SVM give better results, but RF prove to be more performing when training size is larger. Classification error and classification accuracy follow the trend of Kappa index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Distribution map of the different lithologic units in loess plateau of eastern Golestan by using remote sensing technique; Aghband research area

Introduction: Along with the climate, Soil is an essential natural resource. Although soil studies in Iran have been started more than 50 years ago, the soil map of the country has not been fully prepared yet, and only 20-25% of the lands have been mapped already. Many soil maps of Iran need to be updated, but the common methods in soil mapping are costly and time-consuming. Hence, using data o...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017